The Moon and Phases for 2013

The presence of the Moon moderates Earth’s wobble on its axis, leading to a relatively stable climate over billions of years. From Earth, we always see the same face of the Moon because the Moon rotates once on its own axis in the same time that it travels once around Earth (called synchronous rotation).

The light areas of the Moon are known as the highlands. The dark features, called maria (Latin for seas), are impact basins that were filled with lava between 4 and 2.5 billion years ago.

moon 1

Though the Moon has no internally generated magnetic field, areas of magnetism are preserved in the lunar crust, but how this occurred is a mystery. The early Moon appears not to have had the right conditions to develop an internal dynamo, the mechanism for global magnetic fields for the terrestrial planets.

How did the Moon come to be? The leading theory is that a Mars-sized body collided with Earth approximately 4.5 billion years ago, and the resulting debris from both Earth and the impactor accumulated to form our natural satellite. The newly formed Moon was in a molten state. Within about 100 million years, most of the global “magma ocean” had crystallized, with less dense rocks floating upward and eventually forming the lunar crust.

2013 Phases of the Moon

NOTE: All times are Universal time (UTC); to convert to local time add or subtract the difference between your time zone and UTC, remembering to include any additional offset due to summer time for dates when it is in effect.

New Moon First Quarter
Day Time Solar
Eclipse
Day Time
         
11/01/13 19:44:00   18/01/13 23:45:00
10/02/13 07:20:00   17/02/13 20:31:00
11/03/13 19:51:00   19/03/13 17:27:00
10/04/13 09:35:00   18/04/13 12:31:00
10/05/13 00:28:00 Annular 18/05/13 04:34:00
08/06/13 15:56:00   16/06/13 17:24:00
08/07/13 07:14:00   16/07/13 17:24:00
06/08/13 21:51:00   14/08/13 10:56:00
05/09/13 11:36:00   12/09/13 17:08:00
05/10/13 00:34:00   11/10/13 23:02:00
03/11/13 12:50:00 Hybrid
Solar
10/11/13 05:57:00
03/12/13 00:22:00   09/12/13 15:12:00
Full Moon Last Quarter
Day Time Lunar
Eclipse
Day Time
      05/01/13 03:58:00
27/01/13 04:38:00   03/02/13 13:56:00
25/02/13 20:26:00   04/03/13 21:53:00
27/03/13 09:27:00   03/04/13 04:37:00
25/04/13 19:57:00 Partial
(Umbral)
02/05/13 11:14:00
25/05/13 04:25:00 Penumbral 31/05/13 18:58:00
23/06/13 11:32:00   30/06/13 04:53:00
22/07/13 18:15:00   29/07/13 17:43:00
21/08/13 01:45:00   28/08/13 09:35:00
19/09/13 11:13:00   27/09/13 03:55:00
18/10/13 23:38:00 Penumbral 26/10/13 23:40:00
17/11/13 15:16:00   25/11/13 19:28:00
17/12/13 09:28:00   25/12/13 13:48:00
A waxing crescent moon 17 jan 2013

A waxing crescent moon 17 jan 2013

Perigee and Apogee Dates and Times

Perigee  
Day Time Distance in
kilometres a
Closest
or most
distant b
Interval c
   
   
10/01/13 10:27:00 360047   N-1d 9h
07/02/13 12:10:00 365313   N-2d19h
05/03/13 23:21:00 369953   N-5d20h
31/03/13 03:56:00 367493   F+3d18h
27/04/13 19:49:00 362267   F+1d23h
26/05/13 01:46:00 358374   F+ 21h
23/06/13 11:11:00 356989     ++ F- 0h
21/07/13 20:28:00 358401   F- 21h
19/08/13 01:27:00 362264   N-2d18h
15/09/13 16:35:00 367387   N-3d18h
10/10/13 23:07:00 369811   N+5d22h
06/11/13 09:29:00 365361   N+2d20h
04/12/13 10:16:00 360063   N+1d 9h
Apogee
Day Time Distance in
kilometres a
Closest
or most
distant b
Interval c
 
 
22/01/13 10:53:00 405311   F-1d17h
19/02/13 06:31:00 404473   F-6d13h
19/03/13 03:14:00 404261   N+7d 7h
15/04/13 22:23:00 404864   N+5d12h
13/05/13 13:32:00 405826   N+3d13h
09/06/13 21:41:00 406486     – N+1d 5h
07/07/13 00:37:00 406491     — N-1d 6h
03/08/13 08:54:00 405833   N-3d12h
30/08/13 23:47:00 404882   F-5d11h
27/09/13 18:18:00 404308   F-7d 6h
25/10/13 14:26:00 404560   F+6d18h
22/11/13 09:51:00 405445   F+4d18h
19/12/13 23:50:00 406267     + F+2d14h

a:  For each perigee and apogee the distance in kilometres between the centres of the Earth and Moon is given. Perigee and apogee distances are usually accurate to within a few kilometres compared to values calculated with the definitive ELP 2000-82 theory of the lunar orbit; the maximum error over the years 1977 through 2022 is 12km in perigee distance and 6km at apogee.

b:  The closest perigee and most distant apogee of the year are marked with “++” if closer in time to full Moon or “–” if closer to new Moon. Other close-to-maximum apogees and perigees are flagged with a single character, again indicating the nearer phase. Following the flags is the interval between the moment of perigee or apogee and the closest new or full phase; extrema cluster on the shorter intervals, with a smaller bias toward months surrounding the Earth’s perihelion in early January.

c:  “F” indicates the perigee or apogee is closer to full Moon, and “N” that new Moon is closer. The sign indicates whether the perigee or apogee is before (“-“) or after (“+”) the indicated phase, followed by the interval in days and hours. Scan for plus signs to find “photo opportunities” where the Moon is full close to apogee and perigee

moon

Moon phases

As the relative position of the Sun, Moon and Earth changes, differing proportions of the Moon’s visible surface are illuminated by the Sun. The phases of the Moon are specific instances in this process.

New moon

A new Moon occurs when the apparent longitudes of the Moon and Sun differ by 0°. At this time, the Moon does not appear to be illuminated.

First quarter

Occurs when the apparent longitudes of the Moon and Sun differ by 90°. At this time 50 per cent of the Moon’s visible surface is illuminated.

Full moon

Occurs when the apparent longitudes of the Moon and Sun differ by 180°. At this time 100 per cent of the Moon’s visible surface is illuminated.

Last quarter

Occurs when the apparent longitudes of the Moon and Sun differ by 270°. At this time 50 per cent of the Moon’s visible surface is illuminated.

Moonrise and moonset

Moonrise

Moonrise is defined as the instant when, in the eastern sky, under ideal meteorological conditions, with standard refraction of the Moon’s rays, the upper edge of the Moon’s disk is coincident with an ideal horizon.

Moonset

Moonset is defined as the instant when, in the western sky, under ideal meteorological conditions, with standard refraction of the Moon’s rays, the upper edge of the Moon’s disk is coincident with an ideal horizon.

Equinoxes and Solstices

The equinoxes represents either of two times of the year when the Sun crosses the plane of the Earth’s equator and day and night are of equal length, while the solstices is either of the two times of the year when the Sun is at its greatest distance from the celestial equator.

Uploaded on 20 Feb 2012

New images acquired by NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft show that the moon’s crust is being slightly stretched, forming small valleys – at least in some small areas. High-resolution images obtained by the Lunar Reconnaissance Orbiter Camera (LROC) provide evidence that these valleys are very young, suggesting the moon has experienced relatively recent geologic activity.

Smithsonian Institution Senior Scientist Tom Watters explains more about the moon’s recent geological activity in this short video.

Night Sky: Visible Planets, Moon Phases & Events, January 2013

How Moon Phases Work

via Space Dot Com

by Geoff Gaherty , (Space.Com) Starry Night Education
Date: 13 August 2012

Fact or fiction?

The phases of the moon are caused by the shadow of the Earth falling on the moon.

Fiction!

This is probably the most commonly held misconception in all astronomy. Here’s how the moon’s phases really come about:

The moon is a sphere that travels once around the Earth every 29.5 days. As it does so, it is illuminated from varying angles by the sun. At “new moon,” the moon is between the Earth and sun, so that the side of the moon facing towards us receives no direct sunlight, and is lit only by dim sunlight reflected from the Earth. As it moves around the Earth, the side we can see gradually becomes more illuminated by direct sunlight.

How Moon Phases Work

Here’s how the moon changes phases as it orbits the Earth, constantly changing the angle that sunlight hits the moon and is reflected, or not, to our eyes.
CREDIT: Starry Night Software

After a week, the moon is 90 degrees away from the sun in the sky and is half illuminated, what we call “first quarter” because it is about a quarter of the way around the Earth.

A week after this, the moon is 180 degrees away from the sun, so that sun, Earth and moon form a line. The moon is fully illuminated by the sun, so this is called “full moon.” This is the only time in the whole month when the Earth’s shadow is anywhere close to the moon. The Earth’s shadow points towards the moon at this time, but usually the moon passes above or below the shadow and no eclipse occurs.

A week later the moon has moved another quarter of the way around the Earth, to the third quarter position. The sun’s light is now shining on the other half of the visible face of the moon.

Finally, a week later, the moon is back to its new moon starting position. Usually it passes above or below the sun, but occasionally it passes right in front of the sun, and we get an eclipse of the sun.

So, the moon’s phases are not caused by the shadow of the Earth falling on the moon. In fact the shadow of the Earth falls on the moon only twice a year, when there are lunar eclipses.

This article was provided to SPACE.com by Starry Night Education, the leader in space science curriculum solutions. Amateur astronomer Geoff Gaherty operates his own Foxmead Observatory in Coldwater, Ontario, Canada.

A SEN Image
Links to story at SEN: Our Solar System
Moon Phase and Liberation, 2013

Dial-A-Moon At NASA, new interactive tool.

Frame 0081
Example only; the following Information when Astro’s article was Published

Time Friday, January 04, 2013, 08:00 UT
Phase 59.1%
Diameter 1880.3 arcseconds
Distance 381174 km (29.91 Earth diameters)
J2000 Right Ascension, Declination 12h 6m 49s, -5° 5′ 45″
Subsolar Longitude, Latitude -86.114°, 1.181°
Sub-Earth Longitude, Latitude -6.519°, 5.181°
Position Angle 24.462°

A pretty Moon

The animation archived on this page shows the geocentric phase, libration, position angle of the axis, and apparent diameter of the Moon throughout the year 2013, at hourly intervals. Until the end of 2013, the initial Dial-A-Moon image will be the frame from this animation for the current hour.

Published on 20 Nov 2012

This visualization shows the moon’s phase and liberation throughout the year 2013, at hourly intervals. Each frame represents one hour. In addition, this visualization also shows other relevant information, including moon orbit position, sub earth and sub solar points, distance from the Earth. Click each graphic to learn more about what it means! Finally, to learn more about this visualization, or to see what the moon will look like at any hour in 2013, visit http://svs.gsfc.nasa.gov/goto?4000!

This video is public domain and can be downloaded at:http://svs.gsfc.nasa.gov/goto?4000

The jagged, cratered, airless lunar terrain casts sharp shadows that clearly outline the Moon’s surface features for observers on Earth. This is especially true near the terminator, the line between day and night, where surface features appear in high relief. Elevation measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) make it possible to simulate shadows on the Moon’s surface with unprecedented accuracy and detail.

The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 24 seconds, as it is in this animation, our changing view of the Moon makes it look like it’s wobbling. This wobble is calledlibration.

The word comes from the Latin for “balance scale” (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon’s disk and the location on the Moon where the Earth is directly overhead.

The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon’s north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%.

The most noticed monthly variation in the Moon’s appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise.

Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute “north” for “south” in the descriptions.

The phase and libration of the Moon for 2013, at hourly intervals. Includes supplemental graphics that display the Moon's orbit, subsolar and sub-Earth points, and the Moon's distance from Earth at true scale. The phase and libration of the Moon for 2013, at hourly intervals. Includes supplemental graphics that display the Moon’s orbit, subsolar and sub-Earth points, and the Moon’s distance from Earth at true scale.
Duration: 4.9 minutes
Available formats:
1920×1080 MPEG-4   117 MB
1280×720   MPEG-4   57 MB
640×360     MPEG-4   20 MB
1920×1080 Frames (Fancy)
320×180     PNG           143 KB
160×80       PNG           40 KB
80×40         PNG           11 KB
How to play our movies
The phase and libration of the Moon for 2013 at hourly intervals, with music, titles, supplemental graphics, and transcript. The phase and libration of the Moon for 2013 at hourly intervals, with music, titles, supplemental graphics, and transcript.
Duration: 5.3 minutes
Available formats:
1920×1080 (29.97 fps) QT (YouTube) 285 MB
1280×720 (29.97 fps) QT (YouTube) 192 MB
1280×720 (29.97 fps) QT (ProRes) 2 GB
1280×720 (29.97 fps) WMV (Windows) 169 MB
960×540 (29.97 fps) MPEG-4 (AppleTV) 152 MB
640×360 (29.97 fps) QT         116 MB
640×360 (29.97 fps) MPEG-4 (iPod) 60 MB
320×240 (29.97 fps) MPEG-4 (iPod) 30 MB
320×180     PNG           143 KB
How to play our movies
The phase and libration of the Moon for 2013, at hourly intervals. The full-resolution frames include an alpha channel. The phase and libration of the Moon for 2013, at hourly intervals. The full-resolution frames include an alpha channel.
Duration: 4.9 minutes
Available formats:
1920×1080 MPEG-4   84 MB
1280×720   MPEG-4   38 MB
640×360     MPEG-4   11 MB
1920×1080 Frames (Plain)
560×560     Frames
216×216     Frames
320×180     PNG           105 KB
How to play our movies
The phase and libration of the Moon for 2013 at hourly intervals, with music, titles, and transcript. The phase and libration of the Moon for 2013 at hourly intervals, with music, titles, and transcript.
Duration: 5.3 minutes
Available formats:
1920×1080 (29.97 fps) QT (YouTube) 169 MB
1280×720 (29.97 fps) QT (YouTube) 171 MB
1280×720 (29.97 fps) QT (ProRes) 1 GB
1280×720 (29.97 fps) WMV (Windows) 146 MB
960×540 (29.97 fps) MPEG-4 (AppleTV) 134 MB
640×360 (29.97 fps) MPEG-4 (iPod) 60 MB
320×240 (29.97 fps) MPEG-4 (iPod) 24 MB
640×360 (29.97 fps) QT         90 MB
320×180     PNG           105 KB
How to play our movies
The orbit of the Moon in 2013, viewed from the north pole of the ecliptic, with the vernal equinox to the right. The sizes of the Earth and Moon are exaggerated by a factor of 30. The frames include an alpha channel. The orbit of the Moon in 2013, viewed from the north pole of the ecliptic, with the vernal equinox to the right. The sizes of the Earth and Moon are exaggerated by a factor of 30. The frames include an alpha channel.
Duration: 4.9 minutes
Available formats:
420×420     MPEG-4   10 MB
420×420     Frames
320×180     PNG           10 KB
How to play our movies
From this birdseye view, it’s somewhat easier to see that the phases of the Moon are an effect of the changing angles of the sun, Moon and Earth. The Moon is full when its orbit places it in the middle of the night side of the Earth. First and Third Quarter Moon occur when the Moon is along the day-night line on the Earth.The First Point of Aries is at the 3 o’clock position in the image. The sun is in this direction at the spring equinox. You can check this by freezing the animation at the 1:03 mark, or by freezing the full animation with the time stamp near March 20 at 11:00 UTC. This direction serves as the zero point for both ecliptic longitude and right ascension.The north pole of the Earth is tilted 23.5 degrees toward the 12 o’clock position at the top of the image. The tilt of the Earth is important for understanding why the north pole of the Moon seems to swing back and forth. In the full animation, watch both the orbit and the “gyroscope” Moon in the lower left. The widest swings happen when the Moon is at the 3 o’clock and 9 o’clock positions. When the Moon is at the 3 o’clock position, the ground we’re standing on is tilted to the left when we look at the Moon. At the 9 o’clock position, it’s tilted to the right. The tilt itself doesn’t change. We’re just turned around, looking in the opposite direction.
An animated diagram of the subsolar and sub-Earth points for 2013. The Moon's north pole, equator, and meridian are indicated. The frames include an alpha channel. An animated diagram of the subsolar and sub-Earth points for 2013. The Moon’s north pole, equator, and meridian are indicated. The frames include an alpha channel.
Duration: 4.9 minutes
Available formats:
320×320     MPEG-4   5 MB
320×320     Frames
320×180     PNG           21 KB
How to play our movies
The subsolar and sub-Earth points are the locations on the Moon’s surface where the sun or the Earth are directly overhead, at the zenith. A line pointing straight up at one of these points will be pointing toward the sun or the Earth. The sub-Earth point is also the apparent center of the Moon’s disk as observed from the Earth.In the animation, the blue dot is the sub-Earth point, and the yellow dot is the subsolar point. The lunar latitude and longitude of the sub-Earth point is a measure of the Moon’s libration. For example, when the blue dot moves to the left of the meridian (the line at 0 degrees longitude), an extra bit of the Moon’s western limb is rotating into view, and when it moves above the equator, a bit of the far side beyond the north pole becomes visible.At any given time, half of the Moon is in sunlight, and the subsolar point is in the center of the lit half. Full Moon occurs when the subsolar point is near the center of the Moon’s disk. When the subsolar point is somewhere on the far side of the Moon, observers on Earth see a crescent phase.
An animated diagram of the Moon's distance from the Earth for 2013. The sizes and distances are true to scale, and the lighting and Earth-tilt are correct. The frames include an alpha channel. An animated diagram of the Moon’s distance from the Earth for 2013. The sizes and distances are true to scale, and the lighting and Earth-tilt are correct. The frames include an alpha channel.
Duration: 4.9 minutes
Available formats:
1920×1080 MPEG-4   2 MB
1280×720   MPEG-4   1 MB
640×360     MPEG-4   656 KB
1920×1080 Frames (Distance)
320×180     PNG           1 KB
How to play our movies
The Moon’s orbit around the Earth isn’t a perfect circle. The orbit is slightly elliptical, and because of that, the Moon’s distance from the Earth varies between 28 and 32 Earth diameters, or about 356,400 and 406,700 kilometers. In each orbit, the smallest distance is called perigee, from Greek words meaning “near earth,” while the greatest distance is called apogee. The Moon looks largest at perigee because that’s when it’s closest to us.The animation follows the imaginary line connecting the Earth and the Moon as it sweeps around the Moon’s orbit. From this vantage point, it’s easy to see the variation in the Moon’s distance. Both the distance and the sizes of the Earth and Moon are to scale in this view. In the full-resolution frames, the Earth is 50 pixels wide, the Moon is 14 pixels wide, and the distance between them is about 1500 pixels, on average.Note too that the Earth appears to go through phases just like the Moon does. For someone standing on the surface of the Moon, the sun and the stars rise and set, but the Earth doesn’t move in the sky. It goes through a monthly sequence of phases as the sun angle changes. The phases are the opposite of the Moon’s. During New Moon here, the Earth is full as viewed from the Moon.
Waxing crescent. Visible toward the southwest in early evening. Waxing crescent. Visible toward the southwest in early evening.Available formats:
3600 x 3600     TIFF       8 MB
320 x 320         PNG     280 KB
First quarter. Visible high in the southern sky in early evening. First quarter. Visible high in the southern sky in early evening.Available formats:
3600 x 3600     TIFF       9 MB
320 x 320         PNG     293 KB
Waxing gibbous. Visible to the southeast in early evening, up for most of the night. Waxing gibbous. Visible to the southeast in early evening, up for most of the night.Available formats:
3600 x 3600     TIFF     12 MB
320 x 320         PNG     352 KB
Full Moon. Rises at sunset, high in the sky around midnight. Visible all night. Full Moon. Rises at sunset, high in the sky around midnight. Visible all night.Available formats:
3600 x 3600     TIFF     16 MB
320 x 320         PNG     398 KB
Waning gibbous. Rises after sunset, high in the sky after midnight, visible to the southwest after sunrise. Waning gibbous. Rises after sunset, high in the sky after midnight, visible to the southwest after sunrise.Available formats:
3600 x 3600     TIFF     12 MB
320 x 320         PNG     358 KB
Third quarter. Rises around midnight, visible to the south after sunrise. Third quarter. Rises around midnight, visible to the south after sunrise.Available formats:
3600 x 3600     TIFF     10 MB
320 x 320         PNG     317 KB
Waning crescent. Low to the east before sunrise. Waning crescent. Low to the east before sunrise.Available formats:
3600 x 3600     TIFF       7 MB
320 x 320         PNG     281 KB
New Moon. By the modern definition, New Moon occurs when the Moon and Sun are at the same geocentric ecliptic longitude. The part of the Moon facing us is completely in shadow then. Pictured here is the traditional New Moon, the earliest visible waxing crescent, which signals the start of a new month in many lunar and lunisolar calendars. New Moon. By the modern definition, New Moon occurs when the Moon and Sun are at the same geocentric ecliptic longitude. The part of the Moon facing us is completely in shadow then. Pictured here is the traditional New Moon, the earliest visible waxing crescent, which signals the start of a new month in many lunar and lunisolar calendars.Available formats:
3600 x 3600     TIFF       6 MB
320 x 320         PNG     261 KB

Published on 20 Nov 2012

This visualization shows the moon’s phase (Only no detail) and liberation throughout the year 2013, at hourly intervals. Each frame represents one hour

Another cool link to an Interactive MOON Guide 

Night Sky: Visible Planets, Moon Phases & Events, January 2013

Mark Thompson’s guide to the Moon 

Via SEN

Earth s only moon is 3,476 km in diameter & orbits at an average distance of 384,400km
Earth’s only moon is 3,476 km in diameter & orbits at an average distance of 384,400km

By Mark Thompson 24 August 2011

There can be few objects that have inspired both artists and scientists as much as the Moon. Perhaps surprisingly its appearance has barely changed in the thousands of years that mankind has walked the Earth and ancient civilisations enjoyed much the same view as the one we see today. During the Moon’s relentless orbit around the Earth it has witnessed civilisations come and go, entire species evolve and die out and even continents slowly shift. The one thing that has changed over all those years though is our understanding of it, and its still giving us plenty of surprises.

As natural planetary satellites go, the Moon is actually quite large with a diameter of 3,476km (2,155 miles) around the equator. It orbits the Earth at an average distance of 384,400km (238,000 miles) but this varies from its closest, or perigee at 362,570km (225,000 miles) to its most distant point, or apogee of 405,410km (251,000 miles). There are a couple of things people will always think of when you mention the Moon: craters and phases which can both be observed without a telescope.

The phases of the Moon are simple to understand and anyone who has looked at it over a series of nights will notice that it changes progressively night after night with a whole cycle taking about a month. In fact the word month has its origin in the word Moon relating to the approximate length of a full lunar phase cycle. To understand the phases its important to realise that we only see the Moon because it’s a sphere and reflects sunlight – turn the Sun off and the Moon would no longer be visible.

We see the phases change as the Moon orbits around the Earth and the angle between the Sun and Moon alters. During a full Moon, the Sun and Moon are opposite each other in the sky and we see the fully illuminated or daytime face, but at new Moon they are both in the same direction and we see the night time portion of the Moon. As it moves around the Earth, the angle between the Earth, Sun and Moon changes and we see varying amounts of the daytime/nighttime side.The line between the illuminated and un-illuminated faces is called the terminator and its down this line where the Sun is just rising or setting.

From an observational point of view, the surface features are much more prominent if observed when they are near the terminator. The low altitude of the Sun from that point means the shadows cast by the features are much longer making them stand out clearly against the lunar surface. The worst time to observe the Moon is when it’s full and the shadows are minimal.

The phases of the Moon are a little more complicated than I’ve just explained though because the orbit of the Moon around the Earth is very slightly tilted with respect to the Earth’s orbit around the Sun. If it wasn’t then every time we had a full Moon the Earth would block sunlight from reaching the Moon and we would see a lunar eclipse. Clearly we don’t have one every month and its because the Moon’s orbit is tilted that on most occasions the Moon is slightly above or below the Earth’s shadow.

Look at the Moon more closely and you will see dark grey patches, turn binoculars or even a telescope on it and some will turn into great plains while others turn into cavernous craters. The craters were created by meteoric impacts where pieces of space rock smashed into the lunar surface. We see evidence of this process throughout the Solar System even here on Earth. The larger plains, or mare as they are properly called, are the aftermath of much larger impacts that have cracked the lunar surface allowing molten lava to seep up through the mantle. The lava solidifies over time leaving the plains we see today. Before good quality telescopes it was thought these great plains were actually lunar seas.

Another effect of the Moon’s orbit around the Earth are the tides. Like the Earth, the Moon has a gravitational pull and as a result it pulls on the Earth producing a bulge. As the Earth spins once on its axis it ‘passes underneath’ the bulge which we then experience as a tide. There are actually two bulges, one pointing roughly toward the Moon, the other in the opposite direction. When a location passes under the bulge it’s seen as high tide, hence we see two every day.

This bulge is pretty crucial and is having a big impact on the Earth-Moon system. You would think that the bulge lies directly between the Earth and Moon, given that it’s the pull of the Moon’s gravity that causes it. It turns out that the rotation of the Earth drags the bulge a little ahead of the Moon in its orbit. As it lays ahead of the Moon, the extra ‘lump’ of material produces a little extra pull on the Moon causing it to accelerate in its orbit. If you accelerate an orbiting object, it moves into a higher orbit -in other words, it moves further away. Thanks to the Apollo astronauts who left a special mirror on the surface, we can now accurately measure its distance and have found that the Moon is moving away from the Earth at a rate of 3.8cm per year!

It’s not only the Earth that experiences the tides, the Moon too has tides, though to a much lesser degree. The gravitational pull from Earth acts to distort the Moon and produce a lunar tidal bulge toward the Earth. When the Moon first formed it was spinning much faster than it does today and its rotation displaced the tidal bulge from its alignment between the Earth and Moon. The Earth’s gravitational pull still acted upon this bulge causing a braking effect on the Moon’s rotation. Over many millions of years this tidal interaction caused the Moon to slow down so much that it now rotates once on its axis for every orbit around the Earth, every 29.5 days. It’s an effect called captured or synchronous rotation and its result is that we now only ever see one half of the Moon from Earth. In reality we see can see a little more than 50% but this is due to the Moon’s orbital properties allowing us to glance a little further around.

With the Moon moving away from Earth it would be reasonable to assume that at some point they were in the same place. It is believed that the Moon was in fact once part of the Earth. At the time the Earth formed, the Solar System was a war zone with large chunks of rock and proto-planets flying around at ballistic speed. One piece about the size of Mars is thought to have smashed into the Earth throwing vast amounts of material into orbit. It’s believed that most of the heavy elements settled back on Earth while the lighter material stayed in orbit. Recent studies suggest that two moons could have formed, sharing the same orbit, which ultimately collided forming the Moon we see today. This new theory nicely accounts for the observation that one side of the Moon seems to have a much thicker crust which is now thought to be the remains of the Moon’s ancient companion.

Perhaps one of the most incredible discoveries in recent years was the discovery of water ice in some of the deep lunar craters. In these deep craters, that remain almost permanently in shadow, temperatures remain sub zero all year round allowing the ice crystals to form. This discovery opens up tantalising possibilities for future space exploration. The water molecules on the Moon could be harnessed for and purified for future explorers to drink. Taking this a step further, separate the water molecules into their hydrogen and oxygen components and they could be used to create rocket fuel for further onward exploration. No longer can we consider the Moon as a lifeless and hostile place, instead its becoming more likely that mankind’s next step out into the Solar System will involve using the Moon as an outpost for future giant leaps!

Tools from Moon Connection
Moon Software
Moon Phases Calendar
Current Moon Phase
Moon Phase Module
iGoogle Moon Gadget
Gravity On The Moon
Featured
Moon Phases Explained
Moon Trading
Fishing By Moon Phase
Night Photography
Moon Phase Lesson Plan
Moon Glossary
Topics
Tides Explained
One Side of Moon
Moon Facts
Apollo Missions
Apollo 13
Apollo 11
School Moon Activity
Astrological Moon Sign
The Moon Cycle
Lunar Eclipse
Solar Eclipse
Lunar vs Solar Eclipse
Apogee and Perigee
Earthshine
Full Moon Names
Harvest Moon
Blue Moon

RELATED LINKS AT SEN and NASA

Comets ISON and Hale Bop

Comet ISON to be visible to the naked eye by November 2013 in the Northen Hemisphere

It could be brighter than any comet of the past century and may even be visible in DAYLIGHT.   Discovered by Russian astronomers, ISON is thought to originate from the Oort Cloud and may end up crashing into the Sun
Comet Hale Bop above Alaska

Comet Hale Bop above Alaska

TOP NEWS from Reuters
Fri, Dec 28 22:29 PM GMT

By Irene Klotz

(Reuters) – A comet blazing toward Earth could outshine the full moon when it passes by at the end of next year – if it survives its close encounter with the sun.

The recently discovered object, known as comet ISON, is due to fly within 1.2 million miles (1.9 million km) from the center of the sun on November 28, 2013 said astronomer Donald Yeomans, head of NASA’s Near Earth Object Program at the Jet Propulsion Laboratory in Pasadena, Calif.

As the comet approaches, heat from the sun will vaporize ices in its body, creating what could be a spectacular tail that is visible in Earth’s night sky without telescopes or even binoculars from about October 2013 through January 2014.

If the comet survives, that is.

Comet ISON could break apart as it nears the sun, or it could fail to produce a tail of ice particles visible from Earth.

Celestial visitors like Comet ISON hail from the Oort Cloud, a cluster of frozen rocks and ices that circle the sun about 50,000 times farther away than Earth’s orbit. Every so often, one will be gravitationally bumped out from the cloud and begin a long solo orbit around the sun.

On September 21, two amateur astronomers from Russia spotted what appeared to be a comet in images taken by a 16-inch (0.4-meter) telescope that is part of the worldwide International Scientific Optical Network, or ISON, from which the object draws its name.

“The object was slow and had a unique movement. But we could not be certain that it was a comet because the scale of our images are quite small and the object was very compact,” astronomer Artyom Novichonok, one of the discoverers, wrote in a comets email list hosted by Yahoo.

Novichonok and co-discoverer Vitali Nevski followed up the next night with a bigger telescope at the Maidanak Observatory in Uzbekistan. Other astronomers did likewise, confirming the object, located beyond Jupiter’s orbit in the constellation Cancer, was indeed a comet.

“It’s really rare, exciting,” Novichonok wrote.

Comet ISON’s path is very similar to a comet that passed by Earth in 1680, one which was so bright its tail reportedly could be seen in daylight.

The projected orbit of comet ISON is so similar to the 1680 comet that some scientists are wondering if they are fragments from a common parent body.

“Comet ISON…could be the brightest comet seen in many generations – brighter even than the full moon,” wrote British astronomer David Whitehouse in The Independent.

In 2013, Earth has two shots at a comet show. Comet Pan-STARRS is due to pass by the planet in March, eight months before ISON’s arrival.

NASA’s Mars Curiosity rover may be able to provide a preview.

Comet ISON is due to pass by the red planet in September and could be a target for the rover from its vantage point inside Gale Crater.

The last comet to dazzle Earth’s night-time skies was Comet Hale-Bopp, which visited in 1997. Comet 17P/Holmes made a brief appearance in 2007.

(Editing by Kevin Gray and Leslie Gevirtz)

Halebopp031197

Comet Hale-Bopp. Author shot this image at Zab...

Comet Hale-Bopp observed from the MIR space st...

Quasars and Pulsars

Quasars and Pulsars 

The word “quasar” refers to a “quasi-stellar radio source.” The first quasars were discovered in the 1960s when astronomers measured their very strong radio emissions. Later, scientists discovered that quasars are actually radio-quiet, with very little radio emission. However, quasars are some of the brightest and most distant objects we can see.

An artist’s rendering of the most distant quasar

An artist’s rendering of the most distant quasar

These ultra-bright objects are likely the centers of active galaxies where supermassive black holes reside. As material spirals into the black holes, a large part of the mass is converted to energy. It is this energy that we see. And though smaller than our solar system, a single quasar can outshine an entire galaxy of a hundred billion stars.

To date, astronomers have identified more than a thousand quasars.

Joining the dots:

from starburst to elliptical galaxies

Starburst galaxies appear in red. Credit: ESO, APEX (MPIfR/ESO/OSO), A. Weiss et al., Spitzer
Starburst galaxies appear in red. Credit: ESO, APEX (MPIfR/ESO/OSO), A. Weiss et al., Spitzer  
 

By Amanda Doyle at SEN

27 January 2012

(Sen) – Astronomers observing ancient starburst galaxies have made a connection between them and the elliptical galaxies we see today.

There are many different types of galaxies in the Universe and astronomers have long desired to join the dots and solve the puzzles of galaxy evolution. Looking at galaxies that are far, far away is also a way of looking back in time. Their light has taken billions of years to reach us, and thus we see those galaxies as they were billions of years ago. Galaxies in the ancient Universe are often very different than the host of spiral and elliptical galaxies that we are surrounded by today. For example, the extremely bright quasars are common in the distant Universe and yet none exist locally.

However, astronomers using NASA’s Spitzer Space Telescope along with ESO’s Very Large Telescope and 12 metre Atacama Pathfinder Experiment (APEX) telescope have managed to see how distant submillimetre galaxies, quasars, and modern elliptical galaxies fit together in the jigsaw of the Universe.

Sub~millimetre galaxies (SMGs) are situated 10 billion light years from us, and are extremely bright in the infrared region of the spectrum, specifically the submillimetre band. Because the SMGs are located so far away, the light emitted by the galaxies is shifted to much longer wavelengths. These galaxies are also starburst galaxies, meaning that for a short while there is a phenomenal rate of star formation. A supernova explosion would occur every few years and on a planet in a starburst galaxy the night sky would be almost as bright as day.

Astronomers have been able to measure the mass of the dark matter halos surrounding a group of SMGs. Dark matter is invisible and we don’t know what it is, but indirect detections tells us that galaxies are usually engulfed in it. The dark matter typically extends far beyond the edge of the visible galaxy. But measuring the mass of dark matter halos 10 billion light years away is no easy task. Ryan Hickox, lead author of the paper on the subject, explains to Sen how this was done.

“We measure how strongly the galaxies are clustered together in space, using a statistical tool called a ‘correlation function’. If the galaxies were distributed randomly, the correlation function would be equal to zero. However if they are clustered together (sort of like buildings in towns and cities) then they have a positive correlation function. We know from simulations of the Universe how halos of dark matter are clustered together, and this clustering depends strongly on the mass of the halos. Galaxies that live in these halos will be clustered the same way. So by measuring the clustering of the galaxies, we can tell how massive the typical halos that host them are.”

By knowing the mass of the halos of the SMGs, Hickox and his colleagues were able to use computer simulations to fast forward to the present day and show that these galaxies will eventually form giant elliptical galaxies in the modern Universe. However, elliptical galaxies are typically devoid of star formation. So what stopped the immense star formation in the SMGs? Continue Reading

Quasars

Light that is bent by a galaxy can be used to measure the galaxy’s mass. Credit: Joerg Colberg, Ryan Scranton, Robert Lupton, SDSS
Light that is bent by a galaxy can be used to measure the galaxy’s mass. Credit: Joerg Colberg, Ryan Scranton, Robert Lupton, SDSS  

By Amanda Doyle at SEN

14 February 2012

Researchers have used advanced computer simulations to show that the space between galaxies is teeming with dark matter.

Everything that we can see around us in the Universe only makes up around 4.5 per cent of the total mass of the Universe. The remaining “missing mass” is made up of dark matter and dark energy, and the origin of both of these is still a mystery.

While dark matter cannot be directly detected, its presence can be inferred from an effect known as gravitational lensing. Light from a distant object, such as a quasar, is bent around a foreground galaxy so that the light from the quasar becomes distorted. The way in which the light is bent depends on the mass of the “lens” galaxy.

The image on the left shows a simulation of how light from distant sources should appear if there is no intervening “lens,” while the image on the right shows how light can be distorted when there is a galaxy between us and the distant light sources.

However the mass of galaxies is usually much greater than what is expected from looking at the amount of matter that is visible. It has been known for some time that large dark matter halos exist around galaxies, which stretch up to 100 million light years from the centre of the galaxies.

New computer simulations now show that the dark matter does not end at 100 million light years, but instead knows no boundaries as it extends into intergalactic space.  Continue Reading

For daily space news follow Sen on Twitter: @sen. They’re also on  Google+

Ancient Galaxy Cluster Still Producing Stars

Black hole quasar NASA

Space dot Com Video

Astronomers have found a quasar that’s more than five times more powerful than any previously seen. Quasars are mega-bright geysers of matter and energy powered by super-massive black holes at the centers of young galaxies.
Credit: SPACE.com / ESO

NGC 1132: A Mysterious Elliptical Galaxy (An e...

Quasars: Radio Stars 

from Sea and Sky

Quasars are the brightest and most distant objects in the known universe. In the early 1960’s, quasars were referred to as radio stars because they were discovered to be a strong source of radio waves. In fact, the term quasar comes from the words, “quasi-stellar radio source”. Today, many astronomers refer to these objects as quasi-stellar objects, or QSOs. As the resolution of our radio and optical telescopes became better, it was noticed that these were not true stars but some type of as yet unknown star-like objects. It also appeared that the radio emissions were coming from a pair of lobes surrounding these faint star-like objects. It was also discovered that these objects were located well outside our own galaxy. Quasars are very mysterious objects. Astronomers today are still not sure exactly what these objects are. What we do know about them is that they emit enormous amounts of energy. They can burn with the energy of a trillion suns. Some quasars are believed to be producing 10 to 100 times more energy than our entire galaxy. All of this energy seems to be produced in an area not much bigger than our solar system.

Distant Lights

We do know that quasars are extremely distant. In fact, they may be the most distant objects in the universe. They also have the largest red shift of any other objects in the cosmos. Astronomers are able to measure speed and distance of far away objects by measuring the spectrum of their light. If the colors of this spectrum are shifted toward the red, this means that the object is moving away from us. The greater the red shift, the farther the object and the faster it is moving. Since quasars have such a high red shift, they are extremely far away and are moving away from us at extremely high speeds. It is believed that some quasars may be moving away from us at 240,000 kilometers per second or nearly 80% the speed of light. Quasars are, in fact, the most distant objects to ever be detected in the universe. We know that light travels a certain distance in a year. Quasars are so far away that the light we see when we observe them has been traveling for billions of years to reach us. This means that quasars are among the most ancient objects known in the universe. The most distant quasars observed so far are over 10 billion light-years away. This means we are seeing them as they appeared 10 billion years ago. It is entirely possible that some or all of the quasars we see today may not even exist any more.

Peering back to the early Universe, Europe’s Very Large Telescope has found gas-filled galaxies that lacked the gravity dynamics to form stars. A long-sought faint fluorescent glow was detected, revealing these previously invisible objects.
Credit: ESO, Digitized Sky Survey 2, Akira Fujii/David Malin Images. Music: Disasterpeace

What is a Quasar

We still do not know exactly what a quasar is. But the most educated guess points to the possibility that quasars are produced by super massive black holes consuming matter in an acceleration disk. As the matter spins faster and faster, it heats up. The friction between all of the particles would give off enormous amounts of light other forms of radiation such as x-rays. The black hole would be devouring the equivalent mass of one Sun per year. As this matter is crushed out of existence by the black hole, enormous amounts of energy would be ejected along the black hole’s north and south poles. Astronomers refer to these formations as cosmic jets. Another possible explanation for quasars is that they are very young galaxies. Since we know very little about the evolutionary process of galaxies, it is possible that quasars, as old as they are, represent a very early stage in the formation of galaxies. The energy we see may be ejected from the cores of these very young and very active galaxies. Some scientists even believe that quasars are distant points in space where new matter may be entering our universe. This would make them the opposite of black holes. But this is only conjecture. It may be some time before we really understand these strange objects.

Finding Quasars

The first identified quasar was called 3C 273 and was located in the constellation Virgo. It was discovered by T. Matthews and A. Sandage in 1960. It appeared to be associated with a 16th magnitude star like object. Three years later, in 1963, It was noticed that the object had an extremely high red shift. The true nature of this object became apparent when astronomers discovered that the intense energy was being produced in a relatively small area. Today, quasars are identified primarily by their red shift. If an object is discovered to have a very high red shift and appears to be producing vast amounts of energy, it becomes a prime candidate for quasar research. Today more than 2000 quasars have been identified. The Hubble space telescope has been a key tool in the search for these elusive objects. As technology continues to enhance our windows to the universe, we may one day fully understand these fantastic lights

Pulsars

Cosmic Beacons

Pulsars are among the strangest objects in the universe. In 1967, at the Cambridge Observatory, Jocelyn Bell and Anthony Hewish were studying the stars when they stumbled on something quite extraordinary. It was a star-like object that seemed to be emitting quick pulses of radio waves. Radio sources had been known to exist in space for quite some time. But this was the first time anything had been observed to give off such quick pulses. They were as regular as clockwork, pulsing once every second. The signal was originally thought to be coming from an orbiting satellite, but that idea was quickly disproved. After several more of these objects had been found, they were named pulsars because of their rapidly pulsing nature. Bright pulsars have been observed at almost every wavelength of light. Some can actually be seen in visible light. Many people tend to get pulsars confused with quasars. But the two objects are totally different. Quasars are objects that produce enormous amounts of energy and may be the result of a massive black hole at the center of a young galaxy. But a pulsar is a different animal entirely.

Alien worlds that orbit the energetic dead stars known as pulsars may leave electric currents behind them – anomalies that could help researchers find more of these strange planets.

Astronomers know of only four “pulsar planets” so far, and much remains unknown about such worlds, but scientists propose that they formed in the chaos after the supernova explosions that gave birth to the pulsars.

pulsar is a kind of neutron star, a stellar corpse left over from a supernova, a giant star explosion that crushes protons with electrons to form neutrons. Neutron star matter is the densest known material: A sugar cube-size piece weighs as much as a mountain, about 100 million tons. The mass of a single neutron star surpasses that of the sun while fitting into a ball smaller in diameter than the city of London.

The Lighthouse Factor

A pulsar is basically a rapidly spinning neutron star. A neutron star is the highly compacted core of a dead star, left behind in a supernova explosion. This neutron star has a powerful magnetic field. In fact, this magnetic field is about one trillion times as powerful as the magnetic field of the Earth. The magnetic field causes the neutron star to emit strong radio waves and radioactive particles from its north and south poles. These particles can include a variety of radiation, including visible light. Pulsars that emit powerful gamma rays are known as gamma ray pulsars. If the neutron star happens to be aligned so that the poles face the Earth, we see the radio waves every time one of the poles rotates into our line of sight. It is a similar effect as that of a lighthouse. As the lighthouse rotates, its light appears to a stationary observer to blink on and off. In the same way, the pulsar appears to be blinking as its rotating poles sweep past the Earth. Different pulsars pulse at different rates, depending on the size and mass of the neutron star. Sometimes a pulsar may have a binary companion. In some cases, the pulsar may begin to draw in matter from this companion. this can cause the pulsar to rotate even faster. The fastest pulsars can pulse at well over a hundred times a second

Follow @Sea_and_Sky on Twitter

Quasar

Quasar

From @Spacedotcom >

The Nine Most Brilliant Comets Ever Seen

And a History of Comets

Excitement is riding high in the astronomical community with the recent discovery of Comet ISON, which is destined to pass exceedingly close to the sun in late November 2013 and might possibly become dazzlingly bright.

The latest information issued by NASA’s Jet Propulsion Laboratory suggests that this comet could get as bright as magnitude -11.6 on the astronomers’ brightness scale; that’s as bright as nearly full moon!  That would also be bright enough for Comet ISON to be visible during the daytime.

Comets that are visible to the naked eye during the daytime are rare, but such cases are not unique.  In the last 332 years, it has happened only nine other times.  Here is a listing of past comets that have achieved this amazing feat.

In this list we quote the brightness of the comets in terms of magnitude.  On this scale, larger numbers represent dimmer objects; the brightest stars are generally zero to first magnitude, while super-bright objects such as Venus and the moon achieve negative magnitudes. [Spectacular Comet Photos (Gallery)]

Great Comet of 1680 —This comet has an orbit strikingly similar to Comet ISON, begging the question of whether both objects are one and the same or at the very least are somehow related.  Discovered on Nov. 14, 1680 by German astronomer Gottfried Kirsch, this was the first telescopic comet discovery in history. By Dec. 4, the comet was visible at magnitude +2 with a tail 15 degrees long.  On Dec. 18 it arrived at perihelion — its closest approach to the sun — at a distance of 744,000 miles (1.2 million kilometers).

A report from Albany, N.Y. indicated that it could be glimpsed in daylight passing above the sun.  In late December, it reappeared in the western evening sky, again of magnitude +2, and displaying a long tail that resembled a narrow beam of light that stretched for at least 70 degrees. The comet faded from naked-eye visibility by early February 1681.

Great Comet of 1744 — First sighted on Nov. 29, 1743 as a dim 4th-magnitude object, this comet brightened rapidly as it approached the sun.  Many textbooks often cite Philippe Loys de Cheseaux, of Lausanne, Switzerland as the discoverer, although his first sighting did not come until two weeks later.  By mid-January 1744, the comet was described as 1st-magnitude with a 7-degree tail.

By Feb. 1 it rivaled the star Sirius in brightness and displayed a curved tail 15 degrees in length.  By Feb. 18 the comet was as bright as Venus and now displayed two tails.  On Feb. 27, it peaked at magnitude -7 and was reported visible in the daytime, 12 degrees from the sun.  Perihelion came on March 1, at a distance of 20.5 million miles (33 million km) from the sun.  On March 6, the comet appeared in the morning sky, accompanied by six brilliant tails that resembled a Japanese hand fan.

Great Comet of 1843 — This comet was a member of the Kruetz Sungrazing Comet Group, which has produced some of the most brilliant comets in recorded history. Such comets actually graze through the outer atmosphere of the sun, and often do not survive.

The 1843 comet passed only 126,000 miles (203,000 km) from the sun’s photosphere on Feb 27, 1843.  Although a few observations suggest that it was seen for a few weeks prior to this date, on the day when of its closest approach to the sun it was widely observed in full daylight.  Positioned only 1 degree from the sun, this comet appeared as “an elongated white cloud” possessing a brilliant nucleus and a tail about 1 degree in length.  Passengers onboard the ship Owen Glendower, off the Cape of Good Hope described it as a “short, dagger-like object” that closely followed the sun toward the western horizon.

In the days that followed, as the comet moved away from the sun, it diminished in brightness but its tail grew enormously, eventually attaining a length of 200 million miles (320 million km). If you were able to place the head of this comet at the sun’s position, the tail would have extended beyond the orbit of the planet Mars!

The great comet of 1881 by Trouvelot
A chromolithograph of the great comet of 1881 by Trouvelot
CREDIT: E.L. Trouvelot/NYPL
View full size image and Story at Space.com

Great September Comet of 1882 — This comet is perhaps the brightest comet that has ever been seen; a gigantic member of the Kreutz Sungrazing Group.  First spotted as a bright zero-magnitude object by a group of Italian sailors in the Southern Hemisphere on Sept.1, this comet brightened dramatically as it approached its rendezvous with the sun.

By Sept. 14, it became visible in broad daylight and when it arrived at perihelion on the 17th, it passed at a distance of only 264,000 miles (425,000 km) from the sun’s surface.  On that day, some observers described the comet’s silvery radiance as scarcely fainter than the limb of the sun, suggesting a magnitude somewhere between -15 and -20!

The following day, observers in Cordoba, Spain described the comet as a “blazing star” near the sun.  The nucleus also broke into at least four separate parts. In the days and weeks that followed, the comet became visible in the morning sky as an immense object sporting a brilliant tail.  Today, some comet historians consider it as a “Super Comet,” far above the run of even Great Comets.

Great January Comet of 1910 — The first people to see this comet —  then already at first magnitude —  were workmen at the Transvaal Premier Diamond Mine in South Africa on Jan. 13, 1910.  Two days later, three men at a railway station in nearby Kopjes casually watched the object for 20 minutes before sunrise, assuming that it was Halley’s Comet.

Later that morning, the editor of the local Johannesburg newspaper telephoned the Transvaal Observatory for a comment.  The observatory’s director, Robert Innes, must have initially thought this sighting was a mistake, since Halley’s Comet was not in that part of the sky and nowhere near as conspicuous. Innes looked for the comet the following morning, but clouds thwarted his view.  However, on the morning of Jan. 17, he and an assistant saw the comet, shining sedately on the horizon just above where the sun was about to rise.  Later, at midday, Innes viewed it as a snowy-white object, brighter than Venus, several degrees from the sun.  He sent out a telegram alerting the world to expect “Drake’s Comet” —  for so “Great Comet” sounded to the telegraph operator.

It was visible during the daytime for a couple more days, then moved northward and away from the sun, becoming a stupendous object in the evening sky for the rest of January in the Northern Hemisphere. Ironically, many people in 1910 who thought they had seen Halley’s Comet instead likely saw the Great January Comet that appeared about three months before Halley. [Photos of Halley’s Comet Through History]

Comet Skjellerup-Maristanny, 1927 —Another brilliant comet, first seen as a 3rd magnitude object in early December 1927, had the unfortunate distinction of arriving under the poorest observing circumstances possible.  The orbital geometry was such that the approaching comet could not be seen in a dark sky at any time from either the Northern or the Southern Hemisphere.

Nonetheless, the comet reached tremendous magnitude at perihelion on Dec. 18.  Located at a distance of 16.7 million miles (26.9 million km) from the sun, it was visible in daylight about 5 degrees from the sun at a magnitude of -6.  As the comet moved out of the twilight and headed south into darker skies, it faded rapidly, but still threw off an impressively long tail that reached up to 40 degrees in length by the end of the month.

40 Years Ago: A Great Comet

This painting of Comet Ikeya-Seki, visible during the day, was done by now-retired Hayden Planetarium artist Helmut K. Wimmer and was based on a description made by Hayden’s Chief Astronomer, Ken Franklin, from an airplane hovering over West Point, New York. It was originally published in the February 1966 issue of Natural History magazine. Republished with permission.

Comet Ikeya-Seki, 1965 — This was the brightest comet of the 20th century, and was found just over a month before it made perihelion passage in the morning sky, moving rapidly toward the sun.

Like the Great Comets of 1843 and 1882, Ikeya-Seki was a Kreutz Sungrazer, and on Oct. 21, 1965, it swept within 744,000 miles (1.2 million km) of the center of the sun.  The comet was then visible as a brilliant object within a degree or two of the sun, and wherever the sky was clear, the comet could be seen by observers merely by blocking out the sun with their hands.

From Japan, the homeland of the observers who discovered it, Ikeya-Seki was described as appearing “ten times brighter than the full moon,” corresponding to a magnitude of -15. Also at that time, the comet’s nucleus was observed to break into two or three pieces.  Thereafter, the comet moved away in full retreat from the sun, its head fading very rapidly but its slender, twisted tail reaching out into space for up to 75 million miles (120 million km), and dominating the eastern morning sky right on through the month of November.

Comet West, 1976 — This comet developed into a beautiful object in the morning sky of early March 1976 for Northern Hemisphere observers.  It was discovered in November 1975 by Danish astronomer Richard West in photographs taken at the European Southern Observatory in Chile. Seventeen hours after passing within 18.3 million miles (29.5 million km) of the sun on Feb. 25, 1976, it was glimpsed with the naked eye 10 minutes before sunset by John Bortle.

In the days that followed, Comet West displayed a brilliant head and a long, strongly structured tail that resembled “a fantastic fountain of light.”  Sadly, having been “burned” by the poor performance of Comet Kohoutek two years earlier, the mainstream media all but ignored Comet West, so most people unfortunately failed to see its dazzling performance.

New Comet is Brightest in 30 Years

Michael Jager and Gerald Rhemann photographed comet C/2006 P1 (McNaught) from Austria in twilight 45 minutes before sunrise on Jan. 3. Rhemann told SPACE.com they used 7×50 binoculars to find the comet. They estimate that today (Jan. 5) it shone at magnitude +1 and they expect to see it with the naked eye next week. 

Comet McNaught, 2007 —Discovered in August 2006 by astronomer Robert McNaught at Australia’s Siding Spring Observatory, this comet evolved into a brilliant object as it swept past the sun on Jan. 12, 2007 at a distance of just 15.9 million miles (25.6 million km).  According to reports received from a worldwide audience at the International Comet Quarterly, it appears that the comet reached peak brightness on Sunday, Jan. 14 at around 12 hours UT (7:00 a.m. EST, or 1200 GMT).  At that time, the comet was shining at magnitude 5.1.

Some observers, such as Steve O’Meara, located at Volcano, Hawaii, observed McNaught in daylight and estimated a magnitude as high as -6, noting, “The comet appeared much brighter than Venus!”

After passing the sun, Comet McNaught developed a stupendously large, fan-shaped tail somewhat reminiscent of the Great Comet of 1744. Unfortunately for Northern Hemisphere observers, the best views of Comet McNaught were mainly from south of the equator.

Joe Rao serves as an instructor and guest lecturer at New York’s Hayden Planetarium. He writes about astronomy for The New York Times and other publications, and he is also an on-camera meteorologist for News 12 Westchester, New York.

Universe Feature and Star Map of the Galaxy

European Southern Observatory

17 December 2012: Astronomers from around the world have been meeting in Chile to discuss the exciting first year of scientific results from the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. ALMA started Early Science operations at the end of September 2011, and the first scientific papers have recently been appearing in refereed journals. …   Read more

This VLT image of the Thor’s Helmet Nebula was taken on the occasion of ESO’s 50th Anniversary, 5 October 2012

This VLT image of the Thor’s Helmet Nebula was taken on the occasion of ESO’s 50th Anniversary, 5 October 2012

12 December 2012: A video compilation of time-lapse footage of the Atacama Large Millimeter/submillimeter Array (ALMA) is now available. The video is a collection of time-lapse shots of the ALMA site in the Atacama Desert of northern Chile, showing the synchronised dance of the array’s antennas as they observe the clear night sky …      Read more

Current Playlist from ESO

Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole.

Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole.

The following image via ESO is a composite image of the brown dwarf object 2M1207 (centre) Picture also links to ESO’s current Star Images.  The fainter object seen near it, at an angular distance of 778 milliarcsec. Designated “Giant Planet Candidate Companion” by the discoverers, it may represent the first image of an exoplanet. read more

a brown dwarf

From NASA Oct 2012

The interstellar boundary region shields our solar system from most of the dangerous galactic cosmic radiation that otherwise would enter the solar system from interstellar space.

› Link to Media Advisory

› Link to Press Release

› Link to Feature Story

› Link to Presenter Bios

› Link to Associated Media

IBEX Full Sky Map 01.31.2012 via NASA

Color-coded full sky neutral atom map, as obtained with IBEX at energies where the interstellar wind is the brightest feature in the maps. In Earth’s orbit, where IBEX makes its observations, the maximum flow (in red) is seen to arrive from Libra instead of Scorpio because the interstellar wind is forced to curve around the Sun by gravity. Credit: NASA/Goddard/UNH

› Link to associated news item

2 Articles From New Scientist

20 December 2012

by Lisa Grossman at New Scientist (< full story link)

We’re about to get a better grasp of one of the biggest ideas in the universe:inflation. The first maps of the cosmos from the European Space Agency’s Planck satellite are due out in early 2013. They should help us to hone descriptions of how, after the big bang, the universe grew from smaller than a proton into a vast expanse in less than a trillionth of a trillionth of a second.

The early universe was a featureless soup of hot plasma that somehow grew into the dense galaxy clusters and cosmic voids we know today. On a large scale, regions far apart from each other should look very different, according to the laws of thermodynamics. But studies of the cosmic microwave background (CMB) – the first light to be released, some 300,000 years after the big bang – show that the universe still looks virtually the same in all directions.

Best ever map of the early universe

From 2006  by  Stephen Battersby

And the new evidence agrees that the universe went through a traumatic growth spurt before it was a billionth of a billionth of a second old

The universe went through a traumatic growth spurt before it was a billionth of a billionth of a second old, according to the latest data from the Wilkinson Microwave Anisotropy Probe (WMAP).

The probe has also given physicists their first clues about what drove that frantic expansion, and revealed that the cosmic “dark age” before the first stars switched on was twice as long as previously thought.

On Thursday, the WMAP team revealed the best map ever drawn of microwaves from the early universe, showing variations in the brightness of radiation from primordial matter. The pattern of these variations fits the predictions of a physical theory called inflation, which suggests that during the first split second of existence the universe expanded incredibly fast.

The variations in the density of matter that the microwave map shows up were created by quantum fluctuations during the expansion, according to the theory. If so, then those fluctuations provided the seeds for the gravitational growth of galaxies and stars – without inflation the universe would still be a featureless cloud of gas.

^^

(Image: NASA/WMAP Science Team)

(Image: NASA/WMAP Science Team)

The white bars on this new, more detailed map of the infant universe show the polarisation direction of the oldest light, which provides clues about events in the first trillionth of a second of the universe (Image: NASA/WMAP Science Team)

new map

The latest (in 2006) WMAP data supports the idea of rapid inflation at the universe’s birth followed by much more gradual expansion

WMAP Team Releases Final Results, Based on Nine Years of Observations

Since its launch in 2001, the Wilkinson Microwave Anisotropy Probe (WMAP) space mission has revolutionized our view of the universe, establishing a cosmological model that explains a widely diverse collection of astronomical observations. Led by Johns Hopkins astrophysicist Charles L. Bennett, the WMAP science team has determined, to a high degree of accuracy and precision, not only the age of the universe, but also the density of atoms; the density of all other non-atomic matter; the epoch when the first stars started to shine; the “lumpiness” of the universe, and how that “lumpiness” depends on scale size.

In short, when used alone (with no other measurements), WMAP observations have made our knowledge of those six parameters above about 68,000 times more precise, thereby converting cosmology from a field of often wild speculation to a precision science.

Now, two years after the probe “retired,” Bennett and the WMAP science team are releasing its final results, based on a full nine years of observations.

“It is almost miraculous, says Bennett, Alumni Centennial Professor of Physics and Astronomy and Johns Hopkins Gilman Scholar at the Johns Hopkins University’s Krieger School of Arts and Sciences. “The universe encoded its autobiography in the microwave patterns we observe across the whole sky. When we decoded it, the universe revealed its history and contents. It is stunning to see everything fall into place.”

WMAP’s “baby picture of the universe” maps the afterglow of the hot, young universe at a time when it was only 375,000 years old, when it was a tiny fraction of its current age of 13.77 billion years. The patterns in this baby picture were used to limit what could have possibly happened earlier, and what happened in the billions of year since that early time. The (mis-named) “big bang” framework of cosmology, which posits that the young universe was hot and dense, and has been expanding and cooling ever since, is now solidly supported, according to WMAP.

WMAP observations also support an add-on to the big bang framework to account for the earliest moments of the universe. Called “inflation,” the theory says that the universe underwent a dramatic early period of expansion, growing by more than a trillion trillion-fold in less than a trillionth of a trillionth of a second. Tiny fluctuations were generated during this expansion that eventually grew to form galaxies.

Remarkably, WMAP’s precision measurement of the properties of the fluctuations has confirmed specific predictions of the simplest version of inflation:  the fluctuations follow a bell curve with the same properties across the sky, and there are equal numbers of hot and cold spots on the map. WMAP also confirms the  predictions that the amplitude of the variations in the density of the universe on big scales should be slightly larger than smaller scales, and that the universe should obey the rules of Euclidean geometry so the sum of the interior angles of a triangle add to 180 degrees.

Recently, Stephen Hawking commented in New Scientist that WMAP’s evidence for inflation was the most exciting development in physics during his career.

The universe comprises only 4.6 percent atoms. A much greater fraction, 24 percent of the universe, is a different kind of matter that has gravity but does not emit any light — called “dark matter”. The biggest fraction of the current composition of the universe, 71%, is a source of anti-gravity (sometimes called “dark energy”) that is driving an acceleration of the expansion of the universe.

“WMAP observations form the cornerstone of the standard model of cosmology, “says Gary F. Hinshaw of the University of British Columbia, who is part of the WMAP science team. “Other data are consistent and when combined we now know precise values for the history, composition, and geometry of the universe.”

WMAP has also provided the timing of epoch when the first stars began to shine, when the universe was about 400 million old.  The upcoming James Webb Space Telescope is specifically designed to study that period that has added its signature to the WMAP observations.

WMAP launched on June 30, 2001 and maneuvered to its observing station near the “second Lagrange point” of the Earth-Sun system, a million miles from Earth in the direction opposite the sun. From there, WMAP scanned the heavens, mapping out tiny temperature fluctuations across the full sky.  The first results were issued in February 2003, with major updates in 2005, 2007, 2009, 2011, and now this final release. The mission was selected by NASA in 1996, the result of an open competition held in 1995. It was confirmed for development in 1997 and was built and ready for launch only four years later, on-schedule and on-budget.

“The last word from WMAP marks the end of the beginning in our quest to understand the Universe,” comments fellow Johns Hopkins astrophysicist Adam G. Riess, whose discovery of dark energy led him to share the 2011 Nobel Prize in Physics. “WMAP has brought precision to cosmology and the Universe will never be the same.”

“WMAP has brought precision to cosmology and the Universe will never be the same.”

Related links:

Bennett’s webpage

Hinshaw’s webpage 

Hawking on WMAP

ALL BELOW LINKS from JOHN HOPKINS UNIVERSITY Related>

December 21, 2012 Tags: 

Posted in Academic DisciplinesHomewood Campus NewsInstitutional NewsPhysics and AstronomyUniversity-Related

All Credits to John Hopkins University, NASA and New Scientists Author’s at all above links
This colour image of the region known as NGC 2264 — an area of sky that includes the sparkling blue baubles of the Christmas Tree star cluster and the Cone Nebula

This colour image of the region known as NGC 2264 — an area of sky that includes the sparkling blue baubles of the Christmas Tree star cluster and the Cone Nebula

Planck Science Team Home

2nd announcement of ESLAB 2013 – The Universe as seen by Planck: An international conference dedicated to an in-depth look at the initial scientific results from the Planck mission. ESA/ESTEC, Noordwijk, The Netherlands, 2-5 April 2013. For more information, please visit http://congrexprojects.com/13a11.

Hubble sees back to the cosmic dawn

by Jenny Winder

(Sen) – Astronomers using the Hubble Space Telescope have discovered a population of six previously unseen galaxies that formed 13 billion years ago. They also refined the distance of a seventh galaxy, identified as UDFj-39546284, as the most distant galaxy on record, which we are seeing as it was when the universe was only 380 million years old, less than 3% of its current age. That is further back in time than any object seen before.

The survey of a part of the sky called the Ultra Deep Field (UDF) has given scientists the first robust sample of galaxies that show how abundant they were in the era when galaxies first formed, and support the theory that galaxies assembled continuously over time and could have provided enough radiation to reionize the universe just a few hundred million years after the big bang.

Planck spots hot gas bridging galaxy cluster pair

by Sarah Cruddas

(Sen) – The European Space Agency’s Planck telescope has detected a bridge of hot gas connecting a pair of galaxy clusters. It’s the first conclusive detection of hot gas connecting clusters and is measured across a distance of 10 million light years.

Illustration of the Planck spacecraft. Credit: ESA/C. Carreau

Illustration of the Planck spacecraft. Credit: ESA/C. Carreau

The finding is important because it shows the ability of Planck to probe galaxy clusters, examining their connection with the gas that permeates the entire Universe and from which all groups of galaxies formed.

According to ESA “this marks Planck’s first detection of inter-cluster gas using the SZ effect technique”. The SZ effect technique is named after the scientist Sunyaev–Zel’dovich, who discovered it. If the Cosmic Microwave Background light interacts with the hot gas permeating these huge cosmic structures, its energy distribution is modified in a characteristic way, known as the SZ effect.

In the past Planck has used the SZ effect to detect galaxy clusters, but it also provides a way to detect faint filaments of gas that might connect one cluster to another. At the very early stages of the universe, it’s believed that the cosmos was filled with filaments of gaseous matter, with clusters eventually forming in the densest areas.

Up until now much of this tenuous, filamentary gas has remained undetected. However astronomers expect that it could most likely be found between interacting galaxy clusters, where the filaments are compressed and heated up, making them easier to spot. read more at Sen >

Black Hole Outburst in Spiral Galaxy M83 (NASA...

Black Hole Outburst in Spiral Galaxy M83 (NASA, Chandra, Hubble, 04/30/12) (Photo credit: NASA’s Marshall Space Flight Center)

Black Hole Outburst in Spiral Galaxy M83 (NASA...

Black Hole Outburst in Spiral Galaxy M83 (NASA, Chandra, Hubble, 04/30/12) (Photo credit: NASA’s Marshall Space Flight Center)

A Wonderful Calendar of 2013 Celestial Events

  •  January 3, 4 – Quadrantids Meteor Shower. The Quadrantids are an above average shower, with up to 40 meteors per hour at their peak. The shower usually peaks on January 3 & 4, but some meteors can be visible from January 1 – 5. The near last quarter moon will hide many of the fainter meteors with its glare. Best viewing will be from a dark location after midnight. Look for meteors radiating from the constellation Bootes.
Jupiter Occultation of July 15 2012 from Macedonia

Jupiter Occultation of July 15 2012 from Macedonia

  • January 11 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 19:44 UTC.
  • January 27 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 04:38 UTC.
  • February 10 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 07:20 UTC.
  • View of asteroid 2012 DA14's close pass by Earth on Feb. 15, 2013.

    In this oblique view, the path of near-Earth asteroid 2012 DA14 is seen passing close to Earth on Feb. 15, 2013.
    CREDIT: NASA/JPL Near-Earth Object Program Office

  • Discovery image of the newfound comet C/2011 L4 (PANSTARRS), taken by Hawaii's Pan-STARRS 1 telescope.

    Discovery image of the newfound comet C/2011 L4 (PANSTARRS), taken by Hawaii’s Pan-STARRS 1 telescope.
    CREDIT: Institute for Astronomy/University of Hawaii/Pan-STARRS

  • February 25 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 20:26 UTC.
  • March 11 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 19:51 UTC.
  • March 20 – March Equinox. The March equinox occurs at 11:02 UTC. The Sun will shine directly on the equator and there will be nearly equal amounts of day and night throughout the world. This is also the first day of spring (vernal equinox) in the northern hemisphere and the first day of fall (autumnal equinox) in the southern hemisphere.
  • March 27 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 09:27 UTC.
  • a lunar halo

Lunar Halo – Lunar and solar halos are caused when light passes through ice crystals formed in clouds through the sky. Credit: Shingo Takei

  • April 10 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 09:35 UTC.
  • April 20 – Astronomy Day Part 1. Astronomy Day is an annual event intended to provide a means of interaction between the general public and various astronomy enthusiasts, groups and professionals. The theme of Astronomy Day is “Bringing Astronomy to the People,” and on this day astronomy and stargazing clubs and other organizations around the world will plan special events. You can find out about special local events by contacting your local astronomy club or planetarium. You can also find more about Astronomy Day by checking the Web site for theAstronomical League.
This SDO image shows the Sun at 171 Angstroms just before the flare erupted from the active region. Credit: NASA/SDO
This SDO image shows the Sun at 171 Angstroms just before the flare erupted from an active region. Credit: NASA/SDO  (Via Sen)
  • April 21, 22 – Lyrids Meteor Shower. The Lyrids are an average shower, usually producing about 20 meteors per hour at their peak. These meteors can produce bright dust trails that last for several seconds. The shower usually peaks on April 21 & 22, although some meteors can be visible from April 16 – 25. The gibbous moon could be a problem this year, hiding many of the fainter meteors in its glare. It will set before sunrise, providing a short window of dark skies. Look for meteors radiating from the constellation of Lyra after midnight.
  • April 25 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 19:57 UTC.
  • April 25 – Partial Lunar Eclipse. The eclipse will be visible throughout most of Africa, Europe, Asia, and Australia.
    (NASA Map and Eclipse Information)
  • April 28 – Saturn at Opposition. The ringed planet will be at its closest approach to Earth and its face will be fully illuminated by the Sun. This is the best time to view and photograph Saturn and its moons.
  • May 5, 6 – Eta Aquarids Meteor Shower. The Eta Aquarids are a light shower, usually producing about 10 meteors per hour at their peak. The shower’s peak usually occurs on May 5 & 6, however viewing should be good on any morning from May 4 – 7. The crescent moon will hang around for the show, but should not cause too many problems. The radiant point for this shower will be in the constellation Aquarius. Best viewing is usually to the east after midnight, far from city lights.
  • May 10 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 00:28 UTC.
  • May 10 – Annular Solar Eclipse. The path of annularity will begin in western Australia and move east across the central Pacific Ocean. (NASA Map and Eclipse Information)
  • May 25 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 04:25 UTC.
  • May 28 – Conjunction of Venus and Jupiter. The two bright planets will be within 1 degree of each other in the evening sky. The planet Mercury will also will also be visible nearby. Look to the west near sunset.
  • May 25 – Penumbral Lunar Eclipse. The eclipse will be visible throughout most of North America, South America, western Europe, and western Africa. (NASA Map and Eclipse Information)
  • June 8 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 15:56 UTC.
  • June 21 – June Solstice. The June solstice occurs at 05:04 UTC. The North Pole of the earth will be tilted toward the Sun, which will have reached its northernmost position in the sky and will be directly over the Tropic of Cancer at 23.44 degrees north latitude. This is the first day of summer (summer solstice) in the northern hemisphere and the first day of winter (winter solstice) in the southern hemisphere.
  • June 8 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 15:56 UTC.
  • June 23 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 11:32 UTC.

full moon france

The first of two full moons in August rises over Paris, France in this night sky photo. Astrophotographer VegaStar Carpentier took this photo Aug. 1, 2012 from Paris, France using a Canon EOS 1000D.

  • July 8 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 07:14 UTC.
  • July 22 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 18:15 UTC.
  • July 28, 29 – Southern Delta Aquarids Meteor Shower. The Delta Aquarids can produce about 20 meteors per hour at their peak. The shower usually peaks on July 28 & 29, but some meteors can also be seen from July 18 – August 18. The radiant point for this shower will be in the constellation Aquarius. The last quarter moon will be around for the show and may hide some of the fainter meteors. Best viewing is usually to the east after midnight.
  • August 6 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 21:51 UTC.
  • August 12, 13 – Perseids Meteor Shower. The Perseids is one of the best meteor showers to observe, producing up to 60 meteors per hour at their peak. The shower’s peak usually occurs on August 13 & 14, but you may be able to see some meteors any time from July 23 – August 22. The radiant point for this shower will be in the constellation Perseus. The near first quarter moon will set before midnight, leaving optimal conditions and dark skies for what should be an awesome show. Find a location far from city lights and look to the northeast after midnight.
  • August 21 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 01:45 UTC.
  • August 27 – Neptune at Opposition. The blue planet will be at its closest approach to Earth and its face will be fully illuminated by the Sun. This is the best time to view Neptune. Due to its distance, it will only appear as a tiny blue dot in all but the most powerful telescopes.
  • September 5 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 11:36 UTC.
  • September 19 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 11:13 UTC.
  • September 22 – September Equinox. The September equinox occurs at 20:44 UTC. The Sun will shine directly on the equator and there will be nearly equal amounts of day and night throughout the world. This is also the first day of fall (autumnal equinox) in the northern hemisphere and the first day of spring (vernal equinox) in the southern hemisphere.
  • October 3 – Uranus at Opposition. The blue-green planet will be at its closest approach to Earth and its face will be fully illuminated by the Sun. This is the best time to view Uranus. Due to its distance, it will only appear as a tiny blue-green dot in all but the most powerful telescopes.
  • October 12 – Astronomy Day Part 2. Astronomy Day is an annual event intended to provide a means of interaction between the general public and various astronomy enthusiasts, groups and professionals. The theme of Astronomy Day is “Bringing Astronomy to the People,” and on this day astronomy and stargazing clubs and other organizations around the world will plan special events. You can find out about special local events by contacting your local astronomy club or planetarium. You can also find more about Astronomy Day by checking the Web site for theAstronomical League.
  • October 5 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 00:34 UTC.
  • October 18 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 23:38 UTC.
  • October 18 – Penumbral Lunar Eclipse. The eclipse will be visible throughout most of the world except for Australia and extreme eastern Siberia. (NASA Map and Eclipse Information)
  • October 21, 22 – Orionids Meteor Shower. The Orionids is an average shower producing about 20 meteors per hour at their peak. This shower usually peaks on the 21st, but it is highly irregular. A good show could be experienced on any morning from October 20 – 24, and some meteors may be seen any time from October 17 – 25. The gibbous moon will be a problem this year, hiding all but the brightest meteors with its glare. Best viewing will be to the east after midnight. Be sure to find a dark location far from city lights.
  • November 3 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 12:50 UTC.
  • November 3 – Hybrid Solar Eclipse. The eclipse path will begin in the Atlantic Ocean off the eastern coast of the United States and move east across the Atlantic and across central Africa. (NASA Map and Eclipse Information)
  • November 17 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 15:16 UTC.
  • November 17, 18 – Leonids Meteor Shower. The Leonids is one of the better meteor showers to observe, producing an average of 40 meteors per hour at their peak. The shower itself has a cyclic peak year every 33 years where hundreds of meteors can be seen each hour. The last of these occurred in 2001. The shower usually peaks on November 17 & 18, but you may see some meteors from November 13 – 20. The full moon will prevent this from being a great show this year, but with up to 40 meteors per hour possible, this could still be a good show. Look for the shower radiating from the constellation Leo after midnight.
  • December 3 – New Moon. The Moon will be directly between the Earth and the Sun and will not be visible from Earth. This phase occurs at 00:22 UTC.
  • December 13, 15 – Geminids Meteor Shower. Considered by many to be the best meteor shower in the heavens, the Geminids are known for producing up to 60 multicolored meteors per hour at their peak. The peak of the shower usually occurs around December 13 & 14, although some meteors should be visible from December 6 – 19. The radiant point for this shower will be in the constellation Gemini. The gibbous moon could be a problem this year, hiding man of the fainter meteors. But with up to 60 meteors per hour predicted, this should still be a good show. Best viewing is usually to the east after midnight from a dark location.
  • December 17 – Full Moon. The Moon will be directly opposite the Earth from the Sun and will be fully illuminated as seen from Earth. This phase occurs at 09:28 UTC.
  • Legend for astronomy calendar icons
  • December 21 – December Solstice. The December solstice occurs at 17:11 UTC. The South Pole of the earth will be tilted toward the Sun, which will have reached its southernmost position in the sky and will be directly over the Tropic of Capricorn at 23.44 degrees south latitude. This is the first day of winter (winter solstice) in the northern hemisphere and the first day of summer (summer solstice) in the southern hemisphere.
  • President Obama's 2013 budget proposal slashes space science and planetary missions.

    Via Space dot Com

  • President Barack Obama unveiled his proposed federal budget for 2013 today (Feb. 13), which includes $17.7 billion for NASA and requires painful cuts to the agency’s Mars exploration plans that are already drawing criticism from astronomers. NASA’s portion of the proposed 2013 budget features a cut on planetary science missions, but includes some funding boosts for space technology and human exploration. See how planetary science fares in 2013 for NASA in the above SPACE.com infographic.